
Maths for Computing 

Assignment 4 Solutions 
1. (5 marks) Let . Prove that if we select any  integers from , then there exists 
two integers, say  and , such that  .
Solution: Let  be any number in . Then  can be written in the form of , where 

 and  is an odd number. Now, we can pick any  numbers from  and these 
will be our pigeons. Create  pigeonholes corresponding to each odd number in . Put a 
pigeon, say ,  to the pigeonhole . From pigeonhole principle, we can say that there 
will be at least one pigeonhole, say , that contains two pigeons, say  and 

, such that . Clearly,  is divisible by . Hence, . 

2. (3 marks) How many ways are there to select an -member soccer team and a 5-member 
basketball team from a class of 30 students if
a) nobody can be on two teams.

Solution:  We can first pick soccer team in  ways and then from the rest of the  

players we can pick the basketball team in  ways because no student from the soccer 

team must be there in the basketball team. So the total number of ways teams’ selection 

can be done is .

b) any number of students can be on both the teams.

Solution: Since there are no restrictions we can first choose the soccer team in  ways 

and then the basketball team in  ways. Therefore, the total number of ways will be 

.

c) at most one student can be on both the teams.
Solution: First pick the student that is present in both the teams. This can be done in  
ways. Then, from the rest of the  players we can pick the other  members of the soccer 

team in  ways and then from the rest of the  players, we can pick other  members 
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of basketball team in  ways. So the total number of ways teams can be selected with 

exactly one common player is  . Add  to this number as it is 

the number of ways teams can be selected with no common player.

3. (5 marks) Give a combinatorial proof of the following equation, i.e., prove that both sides 
are counting the same thing, where  and  are integers. (Modifications on any 
side is not allowed)

 

Solution: The RHS is the number of -element subsets of .
The LHS counts the same thing but with respect to the position of the nd smallest 
element of the -element subset. The number of ways to pick -element subsets 

such that  is the nd smallest element is  as we can pick the smallest 

element in  ways and then the rest of the  elements from the remaining 

    elements. Finally, we sum  over all possible 

values of , which is  to .

4. (5 marks) Suppose  and . How many functions    from  to  satisfy the 
property that  How many satisfy the property that ?
Solutions:
The first question is asking to find the number of functions from  to  such that size of 

the range is , i.e., . We can first pick  elements from  in  ways and then 

for every set  elements the number of surjections is . Therefore, the final answer 

is .

Similarly, for the second question the answer is     

    .

(19
4 )

30(29
10)(19

4 ) (30
11)(30

5 )

1 ≤ k ≤ n k , n

1.(n − 1
k − 1) + 2.(n − 2

k − 1) + … + (n − k + 1) . (k − 1
k − 1) = (n + 1

k + 1)
(k + 1) [n + 1]

2
(k + 1) (k + 1)

i 2 (i − 1) . (n − i + 1
k − 1 )

(i − 1) k − 1

n + 1 − i ( = n − i + 1) (i − 1) . (n − i + 1
k − 1 )

i i = 2 n − k + 2

X = [12] Y = [8] f X Y
| f (X ) | = 5? | f (X ) | ≤ 5

X Y

5 | f (X ) | = 5 5 Y (8
5)

5 5!S(12,5)

(8
5)5!S(12,5)

(8
5)5!S(12,5) + (8

4)4!S(12,4) + (8
3)

3!S(12,3) + (8
2)2!S(12,2) + (8

1)1!S(12,1)



Note that , i.e., picking  elements and then assigning them to  elements 

without any restriction, is not the right answer as it is overcounting. (Think about why the 
function that maps every element to  will be counted more than once in this answer.)

5. (5 marks) Prove that   , where  is the set of  length partitions of , where 
every element of the partition is at most .
Solution: Let   be the set of all partitions of  into  parts. The problem is asking to prove 
that . 

We can do this by giving a bijection    between  and , 
                                 
 
Now, we prove three things:
 ’s range is : 

For any partition of , say ,  will be a  length partition of 
, where every element of the partition is at most  because 

(i) , 
(ii)  as , and 
(iii)  because .

 is one to one: 
Let  and  be two distinct 3 length partitions of . Then, for some  

. Therefore,  as for the same , 
.

 is onto:
Let  be some  length partition of , where each part is at most . Then, 

, for .

 because
(i)   
(ii)  as    
(iii)  as 

6. (5 marks) Prove that if , then .
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Solution: 
Upper Bound: Let  denote the number of all set partitions of . In tutorial , we 

proved that . We will use this to prove that , for , 

using strong induction.

Basis Step:  (Notice that , for )
Inductive Step: Assuming  for  and  for , we will prove 
that  for .

Now, , for .

Lower Bound:  Form a partition of  into  non-empty subsets by pairing every element 
of  with an element from . This can be done in  ways. 
Clearly, there are more partitions of  into  non-empty subsets, for , such as 
partitions where some subsets are not of size . Hence, .
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